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Abstract: We examined the uncertainty of the two-dimensional (2D) resistivity method using concep-
tual cavity models. The experimental cavity study was conducted to validate numerical model results.
Spatial resolution and sensitivity to resistivity perturbations were also assessed using checkerboard
tests. Conceptual models were simulated to generate synthetic resistivity data for dipole-dipole
(DD), pole-dipole (PD), Wenner–Schlumberger (WS), and pole-pole (PP) arrays. The synthetically
measured resistivity data were inverted to obtain the geoelectric models. The highest anomaly effect
(1.46) and variance (24,400 Ω·m) in resistivity data were recovered by the DD array, whereas the PP
array obtained the lowest anomaly effect (0.60) and variance (2401 Ω·m) for the shallowest target
cavity set at 2.2 m depth. The anomaly effect and variance showed direct dependency on the quality
of the inverted models. The DD array provided the highest model resolution that shows relatively
distinct anomaly geometries. In contrast, the PD and WS arrays recovered good resolutions, but it
is challenging to determine the correct anomaly geometries with them. The PP array reproduced
the lowest resolution with less precise anomaly geometries. Moreover, all the tested arrays showed
high sensitivity to the resistivity contrasts at shallow depth. The DD and WS arrays displayed the
higher sensitivity to the resistivity perturbations compared to the PD and PP arrays. The inverted
models showed a reduction in sensitivity, model resolution, and accuracy at deeper depths, creating
ambiguity in resistivity model interpretations. Despite these uncertainties, our modeling specified
that two-dimensional resistivity imaging is a potential technique to study subsurface cavities. We
inferred that the DD array is the most appropriate for cavity surveys. The PD and WS arrays are
adequate, while the PP array is the least suitable for cavity studies.

Keywords: cavity; depth of investigation; modeling; resistivity imaging; resolution; sensitivity; un-
certainty

1. Introduction

Resistivity imaging is a geophysical method, which has become a powerful tool to in-
vestigate shallow subsurface features. The technique has been widely used in several fields
of geosciences, such as structural geological [1–5], hydrogeological [6,7], geohazard [8,9],
and environmental [10–13] studies. Subsurface cavity structures most commonly occur
in carbonate terrain through the dissolution of carbonate rocks. Isostatic subsidence of
the developed cavity can impose substantial damage on structural, environmental, and
human values. Engineering structures require subsurface investigation to map and assess
the presence of cavities, which reduces construction risks. Several geophysical methods
are applied in order to determine the size, position, and depth of the subsurface cavities.
Among the geophysical methods, resistivity imaging is a commonly used technique to
identify cavity structures [12,14–16].
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Despite the applicability success, resistivity imaging often leads to non-unique models
of the subsurface. It is well-known that the resistivity method produces uncertainties
in final model interpretation because of the inherited ambiguity in data inversion. This
is because the inversion of electrical resistivity data is a non-linear problem, while the
solutions are obtained using a linearized forward model [17–19]. The resistivity survey
measures a limited number of data points at a discrete electrode spacing, which also
constrained to obtain a unique resistivity response of the subsurface structures [20]. Thus,
the delineation and mapping of subsurface cavities remain challenging in environmental
studies using resistivity imaging [11,21].

Different factors can be considered in cavity studies, such as target size, depth, ori-
entation, geometry, filling materials, and resistivity contrast with the host medium. The
measured apparent resistivity data gives an average value representing a volume of geo-
logical material. The volume-averaging property of the resistivity method may obscure
the small-scale cavity. The sparse sampling and less sensitivity characteristics of the resis-
tivity method with increased survey depth may also obscure cavity information [15,22].
These factors may delimit the technique and the type of array to be used in resistivity
imaging [23,24]. Even though the cavity depth is small and situated at a relatively deeper
depth, substantial resistivity contrast between the cavity and the host medium can reveal
suitable imaging results [12,21,25].

Moreover, selecting the best electrode configuration to recover the material variations
over a cavity zone is the main problem in resistivity study. Among the commonly used
electrode configurations, the dipole-dipole (DD) array is widely used to detect subsurface
lateral changes, yet it is more vulnerable to measurement noises and often produces a
low signal-to-noise ratio. The pole-dipole (PD) configuration has relatively higher signal
strength compared to the DD array. However, the PD array provides asymmetrical resistiv-
ity data that adds bias to the inverted models [21,25], whereas the Wenner–Schlumberger
(WS) configuration is moderately sensitive to both lateral and vertical variations. The WS
array also has a higher signal-to-noise ratio, yet it recovers a relatively lower resistivity
contrast compared to the DD arrays [26,27]. On the other hand, the pole-pole (PP) array can
produce comprehensive horizontal data coverage and survey greater depths as compared
to other types of arrays. However, its remote electrode is highly sensitive to ambient
(telluric) noises [21,25]. Therefore, each array has its advantages and limits in relation to
cavity imaging, and a comprehensive study is needed to ascertain which configuration is
the most suitable one.

Many studies have been carried out to compare the pros and cons of the most com-
monly used resistivity imaging arrays. The study in Reference [22] stressed on the mea-
surement sensitivities of the arrays to compare the Wenner, dipole-dipole, pole-dipole,
pole-pole, Wenner–Schlumberger, and gradient arrays. The dipole-dipole, pole-dipole,
and pole-pole arrays were compared based on the depth of investigation [28]. Another
study [25] performed numerical simulation for five synthetic models using different ar-
rays: pole-pole, pole-dipole, half-Wenner, Wenner, Schlumberger, dipole-dipole, Wenner-β,
γ-array, moving gradient, and midpoint-potential-referred measurement arrays. They
suggested the moving gradient array, pole-dipole, dipole-dipole, and Schlumberger ar-
rays. However, the final choice of the arrays should be decided based on the type of
expected geology as the subsurface geological distributions have a significant impact on
the arrays’ imaging ability. Various numerical simulations for different noise perturba-
tions were conducted by emphasizing the data-acquiring ability of the arrays: Wenner,
dipole-dipole, Wenner–Schlumberger, and linear grid [29]. Comparison of arrays (Wenner,
Wenner–Schlumberger, dipole-dipole, pole-dipole, and pole-pole) for imaging buried tun-
nels showed better results using the Wenner–Schlumberger and dipole-dipole arrays [30].
The Wenner-Alph and Wenner–Schlumberger showed a better result than the dipole-dipole
array for reconstructing the landslide model [31]. Among the Wenner, dipole-dipole, pole-
dipole, and pole-pole arrays used for detecting the cleared-wall foundations, the Wenner
and dipole-dipole arrays were selected as the best methods [32]. From the numerical model-
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ing using the dipole-dipole, pole-dipole, dipole-pole, and pole-pole arrays, the pole-dipole
array showed the best result for modeling sinkhole [33]. The dipole-dipole array imaged
the sinkhole better than the Wenner and Schlumerger arrays [21]; in contrast, the Wenner
array showed better model resolution than the dipole-dipole array for surveying the un-
derground three-dimensional cavity [34]. Even though these studies have evaluated the
effectiveness of resistivity imaging for different geological conditions, there are no studies
that assess the constraints of resistivity imaging as well as the configuration best-suited for
imaging subsurface cavities.

In this study, we present the resistivity imaging uncertainties using synthetic and
experimental cavity models. We simulated a cavity model with different depths, sizes,
orientations, geometries, and filling materials, as these features substantially change the
model result of the resistivity imaging [25]. Additionally, arrays’ spatial resolution and
sensitivity were examined. The modeling was performed for the DD, PD, WS, and PP
arrays since the resolution of data inversion is also constrained by the type of arrays.
A model with cells of a given resistivity value was constructed, and the apparent resistivity
data were formulated using the finite-element method. Inversion of measured resistivity
data was provided with the two-dimensional (2D) geoelectric models. We examined the
constraints of the resistivity method on recovering cavity information for different cavity
models. Moreover, the potential capability of arrays that can reveal the cavity structures
was tested and identified.

2. Methodology

Resistivity imaging is usually applied in unknown geologic conditions, which cannot
fully recover the true subsurface structure for the measured data [35]. Using a synthetic
model under the controlled circumstance is a fundamental approach to assessing imaging
method accuracy. A synthetic modeling so-called forward-inverse cycle consists of standard
geophysical inversion processes, which inverts the synthetically measured data by the
mathematical method to get specific resistivity distribution. It also implements a forward
calculation that predicts a set of resistivity data based on a given synthetic model [36]. We
used forward-inverse modeling to examine resistivity imaging uncertainties and identify
appropriate arrays for cavity probing based on model accuracy, resolution, and sensitivity.
In the following section, we systematically present modeling procedures and data analysis.

2.1. Forward-Inverse Modeling

We developed resistivity conceptual models to represent karstic subsurface structures
in limestone terrain. In nature, cavities have different depth of burial, size, geometry, and
orientation that can be air-filled, water-filled, or sediment-filled [37,38]. To study the effect
of these cavity properties on the recovering ability of the 2D resistivity methods (DD, PD,
WS, and PP arrays), we generate different synthetic models. The cavity depths, sizes,
orientations, and geometries were considered in our numerical modeling. Since the survey
depth has a significant effect on the resistivity model resolution, we focused on the arrays’
performance with cavity depths. We set an air-filled cavity model at six different depths,
naming cavity targets as T1, T2, T3, T4, T5, and T6, with the depths of 2.2, 4.2, 6.2, 8.2, 10.2,
and 12.2 m, respectively (as shown in Figure 1). The target cavity T2 was used for further
analysis as its depth is more common in cavernous limestone terrain. We numerically
modelled the conductive cavities by using a filling of dry and saturated clay; however, the
resistivity of the cavity filling material is a function of the particle size, saturation, and
resistivity of the pore fluid [39].
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cavity T1 at 2.2 m, (b) target cavity T2 at 4.2 m, (c) target cavity T3 at 6.2 m, (d) target cavity T4 at 8.2 m, (e) target cavity T5 
at 10.2 m, (f) target cavity T6 at 12.2 m depth. The depth indicates the mid-point of the cavity. For better illustration, we 
presented only 40 m horizontal section of the models. 
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We used the resistivity value of 10,000 Ω·m for the air-filled cavity [11], 90 Ω·m for the 
cavity filled with dry clay [41], and 50 Ω·m for the cavity filled with saturated clay [33]. 
The arrays such as DD, PD, WS, and PP were used for surface probing, which apply 89 
electrodes with 1 m spacing. 

Furthermore, the synthetic reconstruction test, known as the checkerboard resolution 
test, was implemented in this study. The checkerboard test is often applied in seismic 
studies to examine the lateral resolution of the tomographic image. The alternating pattern 
of positive and negative anomalies along a spatial dimension is used to develop the check-
erboard model. Inversion was performed for synthetically measured data to evaluate the 
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We applied the checkerboard resolution test to assess the resolution of resistivity 
tomogram in-depth cross-section along the survey profiles. Three different size scenarios 
of checkerboard cells were used to examine the anomaly size effect on the spatial resolu-
tion of the recovered models. We used a checkerboard cell size with 1 (vertical) × 2 m 
(horizontal) dimensions in scenario 1. In scenario 2, the size increased by the factor of two, 
i.e., 2 × 4 m cell size, while the factor of four was used in scenario 3, i.e., 4 × 8 m cell size. 
The background resistivity (1000 Ω·m) was perturbed by ±20% resistivity anomaly; thus, 
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Sensitivity in resistivity study can be used in different ways [22,45–48]. In this study, 
sensitivity was used to assess how the arrays are sensitive to different resistivity pertur-
bations (contrasts). In addition to evaluating the spatial resolution of the inverted tomo-
gram, we applied the checkerboard test to examine the sensitivities of the array (DD, PD, 
WS, and PP). We used a checkerboard cell size of 2 m in the vertical direction and 4 m in 

Figure 1. Resistivity synthetic models that represent a target cavity set in limestone unit at six different depths: (a) Target
cavity T1 at 2.2 m, (b) target cavity T2 at 4.2 m, (c) target cavity T3 at 6.2 m, (d) target cavity T4 at 8.2 m, (e) target cavity T5

at 10.2 m, (f) target cavity T6 at 12.2 m depth. The depth indicates the mid-point of the cavity. For better illustration, we
presented only 40 m horizontal section of the models.

As this study specifically examines the case of cavities in karstic terrain, the conceptual
models’ host medium was considered as uniform dry limestone rock with a resistivity
value of 1000 Ω·m. Only in the case of conductive cavity modeling, when the water table is
above the cavity, did we use a resistivity value of 450 Ω·m for the host limestone [38,40].
We used the resistivity value of 10,000 Ω·m for the air-filled cavity [11], 90 Ω·m for the
cavity filled with dry clay [41], and 50 Ω·m for the cavity filled with saturated clay [33].
The arrays such as DD, PD, WS, and PP were used for surface probing, which apply 89
electrodes with 1 m spacing.

Furthermore, the synthetic reconstruction test, known as the checkerboard resolution
test, was implemented in this study. The checkerboard test is often applied in seismic
studies to examine the lateral resolution of the tomographic image. The alternating pattern
of positive and negative anomalies along a spatial dimension is used to develop the
checkerboard model. Inversion was performed for synthetically measured data to evaluate
the recovered model resolution [42–44].

We applied the checkerboard resolution test to assess the resolution of resistivity
tomogram in-depth cross-section along the survey profiles. Three different size scenarios of
checkerboard cells were used to examine the anomaly size effect on the spatial resolution of
the recovered models. We used a checkerboard cell size with 1 (vertical) × 2 m (horizontal)
dimensions in scenario 1. In scenario 2, the size increased by the factor of two, i.e.,
2 × 4 m cell size, while the factor of four was used in scenario 3, i.e., 4 × 8 m cell size.
The background resistivity (1000 Ω·m) was perturbed by ±20% resistivity anomaly; thus,
the checkerboard cells were assigned by alternating resistivity values of 800 and 1200 Ω·m.

Sensitivity in resistivity study can be used in different ways [22,45–48]. In this study,
sensitivity was used to assess how the arrays are sensitive to different resistivity perturba-
tions (contrasts). In addition to evaluating the spatial resolution of the inverted tomogram,
we applied the checkerboard test to examine the sensitivities of the array (DD, PD, WS,
and PP). We used a checkerboard cell size of 2 m in the vertical direction and 4 m in the
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horizontal direction with background resistivity of 1000 Ω·m, which was perturbed by
±20%, 40%, 60%, and 80% anomalies.

The conceptual models were simulated to generate synthetic resistivity data. We
implemented the AGI EarthImagerTM 2D software [49] for the model simulations. The
finite-element modeling calculates the resistivity data using a partial differential equa-
tion [50]. Throughout the entire lateral and vertical mesh formulations, 1.0 m thickness and
depth increment factor were used. Finer meshes of 0.5 × 0.5 m were applied to increase
the forward modeling accuracy. The simulation was perturbed using Gaussian noise (a
random value generated with zero mean and 3% standard deviation) in order to integrate
the field data-acquisition noise effects.

We applied a robust inversion scheme to recover the 2D geoelectric model. It op-
timizes [51] the least-square method [52] by integrating the weighting matrices, giving
approximately equal weight for data misfit and model roughness vector in the inversion
processes. Robust inversion also provides improved inversion results for sharper resistivity
models. It obtains more compacted anomalies, and it is a sound method to reduce data
outliers [53]. Consistently, in our modeling, the robust inversion provided minor inversion
artefacts, especially for large resistivity contrasts over a short profile distance.

The use of a larger grid size makes the inversion process more efficient; however, it
leads to low model resolutions. Further discretization of the model parameters, on the
contrary, does not show substantial changes in the model structure rather than smoothening
the transition zones [53]. Hence, we applied an optimal grid of 1 × 1 m for the inversion of
apparent resistivity data. The damping and smoothing factors were set to 10 initially, and
these factors were reduced iteratively.

2.2. Data Analysis

We analyzed the numerically measured apparent resistivity data using a statistical
variance, which describes how far the data are spread out from the average value. Variance
was also used to examine the association of measured resistivity data with the cavities since
the resistivity method explicitly depends on the subsurface resistivity variations. A higher
variance may indicate larger resistivity contrast and vice versa. Hence, the variance (σρ) for
the measured apparent resistivities (ρi) with the mean value (µρ) was calculated as follows:

σρ
2 =

1
N

N

∑
i=1

(ρi − µρ)
2 (1)

The anomaly effect (AE) was first introduced by Militzer [54], commonly used to eval-
uate arrays’ measuring abilities. The anomaly effect was also used to examine arrays’ ap-
plicability for different subsurface features, and it is calculated using the expression [25,55]:

AE =

∣∣∣∣max
(

ρa
ρav

)
− min

(
ρa
ρav

)∣∣∣∣ (2)

where ρmax, ρmin, and ρav represent the maximum, minimum, and average apparent
resistivities, respectively. We applied the anomaly effect to assess the recovering abilities of
the arrays and inspect the corresponding image quality as a function of cavity depth.

Data misfit between the measured and predicted apparent resistivity using relative
root mean square (RMS) error [56] was used to assess arrays’ inversion error with cav-
ity depth.

The depth of investigation (DOI) index [28,57] calculated the depth below, for which
the obtained model influenced by the reference model rather than the measured data, by
inverting the same dataset twice with different reference models (m01 and m02) using 0.1
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and 10 times of the average apparent resistivity. DOI value of the bottom model (Rb) was
used to normalize the DOI index, and it is presented as:

DOI (x, z) =
m1(x, z)− m2 (x, z)

Rb(m01 − m02)
(3)

where m1 and m2 indicate the inverted resistivity values of the same cell for the two inversions.
We also examined the arrays’ model accuracy based on the image correlation between

the actual and inverted cavity models. The similarities were quantified using a statistical
correlation coefficient that is expressed by:

Correl (ρi, ρa) =
∑(ρi − µi)(ρa − µa)√
∑(ρi − µi)

2(ρa − µa)
2

(4)

where ρi is the inverted resistivity data points, ρa is the actual model resistivity data
points, µi is the mean value for the inverted resistivity data, and µa is the mean value for
the actual resistivity data.

3. Results and Discussion
3.1. Array Detection Ability

The data recovering ability of different arrays may vary when applied to a specific
subsurface structure [47]. In this study, we used the statistical variance to examine the
measuring ability of arrays with regard to cavity depth. As depicted in Figure 2, when
modeling the target cavity T1 (at 2.2 m depth), resistivity data exhibited the variances
of 24,400, 9058, 6341, and 2401 Ω·m for the DD, PD, WS, and PP arrays, respectively. In
contrast, for the target cavity T6 (at 12.2 m depth), resistivity data showed a statistical
variance of 1100, 1044, 936, and 900 Ω·m for the DD, PD, WS, and PP arrays, respectively.
The DD array depicted the maximum variance in resistivity data, whereas the PD and
WS arrays produced moderate variances. The resistivity data from the PP array indicated
the least variance. The results also show a linear dependence between the variance of the
resistivity data and the accuracy of the cavity model recovered. Figure 2 shows that the
decrease in resistivity data variance with increasing cavity depth is likely due to decreasing
measurement sensitivity with survey depth [22].
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To obtain reliable and high-resolution resistivity tomograms, the arrays used in the
measurements should provide data with maximum anomaly information [47]. Thus, we
calculated the anomaly effect of the numerically measured resistivity data, which shows the
recovering ability of the arrays for different air-filled cavity depths. As shown in Figure 3,
the highest anomaly effects of 1.46, 1.16, 0.74, and 0.6 for the corresponding arrays of DD,
PD, WS, and PP were shown for the simulation of the shallowest cavity T1. In contrast, the
arrays DD, PD, WS, and PP exhibited the lowest anomaly effects of 0.245, 0.24, 0.19, and
0.18 respectively, for the deepest cavity T6. The dielectric nature of the cavity causes the
arrays to acquire resistivity data with higher anomaly effects, mainly for the shallow cavity
depth [11]. The DD array provided maximum anomaly effect, while the PP array exhibited
minimum anomaly effect, similar to other studies [55]. In comparison, the PD and WS
arrays depicted moderate anomaly effects. The anomaly effect shows a linear relationship
with the measurement sensitivity of the array [47]. This could be the reason behind the
decline of anomaly effects with an increasing cavity depth (Figure 3). The higher sensitivity
near the electrode location may enable the arrays to get a more pronounced anomaly effect.
On the other hand, the low sensitive zone of the far electrode position might limit the
arrays to recover the higher anomaly effect.
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3.2. Inversion Error

The presence of noisy data points can create a large discrepancy between the inverted
and the resistivity model, producing artefacts in the inverted resistivity models [58]. In
this study, we used the statistical 95% confidence interval to identify those noisy data
points. Figure 4 exhibits the model predicted versus synthetically measured apparent
resistivity datasets for the target cavity T2. About 5% of the data points situated on
the upper and lower limit of the scatter plots were specified as outliers. The predicted
resistivity was significantly overestimated for smaller values of measured resistivity data
points that may be related to the background medium (host limestone unit). On the other
hand, the predicted resistivity was considerably underestimated for the extreme values of
measured resistivity, probably due to the smoothing of the resistivity contrast between the
background medium and the cavity by the inversion method [59].
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Figure 4. The scatter plot of the model predicted and synthetically measured apparent resistivity data
for the arrays: (a) dipole-dipole (DD) array, (b) pole-dipole (PD) array, (c) Wenner–Schlumberger (WS)
array, and (d) pole-pole (PP) array. Overestimated and underestimated data outliers are displayed on
the upper and lower boundaries.

The inversion model with a smaller error usually provides a more accurate image;
however, it does not necessarily mean that an inverted model with a smaller RMS error can
give a realistic final model. This is because the inversion algorithm will sometimes tend to
overfit the measured data for a larger number of iterations. For large resistivity contrasts,
the inversion algorithm can progressively increase the inverted resistivity value from one
iteration to the next without a considerable change in RMS error [60]. Consequently, a
best-inverted model is often attained at a relatively low iteration number [61]. In cavity
modeling, we used the model outputs with a maximum number of 4 iterations to reduce
data overfit as further iterations did not improve the results. The result also depicted a
considerable RMS error for inversion of high-contrast resistivity data. It is well-known
that the surface resistivity method can acquire high-contrast resistivity data for shallower
structures (e.g., cavity) than the deeper ones. As a result, the inversion of shallower cavity
models exhibited higher RMS error than the deeper models (Figure 5), yet the inversion
processes were stopped as long as the absolute data misfit value closes perturbation noise
level (3%). Resistivity modeling may also reveal high model resolution, although the
inversion provides large RMS error and vice versa. For example, the DD array showed a
higher model resolution than the PP array; however, the DD array produced a larger RMS
error than the PP array (Figure 5).
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3.3. Model Accuracy, Resolution, and Sensitivity
3.3.1. Model Accuracy
Depth of Cavity

We evaluated the model accuracy of arrays numerically using the image correlation
between the actual and inverted resistivity models, as shown in Figure 6. The DD model
correlation values were highest, varying from 0.29 (T6) to 0.82 (T1). On the other hand, the
PD and WS models depicted moderate image correlation, ranging from 0.28 (T6) to 0.75
(T1) for the PD models and 0.24 (T6) to 0.81 (T1) for the WS models. The lowest correlation
values were exhibited by the PP array, varying from 0.19 (T6) to 0.71 (T1). The correlation
coefficients were directly associated with the accuracy of the obtained models.
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Moreover, the cavity region showed significant changes in model accuracy and resolu-
tion based on cavity depth. For the convenience of description, we categorized the air-filled
cavity targets as shallower (T1 and T2), intermediate (T3 and T4), and deeper (T5 and T6)
based on the cavity situated depths.

The shallower cavity models situated at 2.2 m (T1) and 4.2 m (T2) depths were accu-
rately reconstructed by the DD, PD, and WS arrays, as depicted in Figures 7, 8 and 9a,b.
The obtained images have also shown a strong statistical correlation with actual mod-
els (Figure 6). The PP array yielded a relatively lower resolution than the tested arrays
(Figure 10a,b). The resistivity imaging displayed relatively wider anomaly sizes regarding
the actual cavity models (Figures 7, 8, 9 and 10a,b). The obtained geometry accuracy was
considerably varied for the upper and lower anomaly boundaries. For instance, the upper
boundary of the T1 anomaly coincided with an actual cavity model, while the bottom
boundary extended beyond that of the actual models (Figure 7a). Generally, inversion
artefact increases with the survey depth; however, the inversion for high resistivity contrast
may also provide a noticeable artefact, especially nearby the anomalous body [62]. Even
though we applied the robust inversion algorithm, inversion for the shallow depth cavities
has generated considerable artefacts, as depicted in Figures 7, 8, 9 and 10a,b. The significant
artefacts in inversions performed in all the air-filled cavity modeling had the resistivity
value below 950 Ω·m, that is often misinterpreted as subsurface physical features.
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(e) T5, (f) T6. The rectangular boxes indicate the actual air-filled cavities. The broken lines represent the depth of investigation
(DOI) threshold depths. For better anomaly illustration, we presented only a 40 m lateral model section.
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Figure 9. Inverted resistivity model using Wenner–Schlumberger (WS) array for the cavity targets: (a) T1, (b) T2, (c) T3,
(d) T4, (e) T5, (f) T6. The rectangular boxes indicate the actual air-filled cavities. The broken lines represent the DOI
threshold depths.
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Figure 10. Inverted resistivity model using pole-pole (PP) array for the cavity targets: (a) T1, (b) T2, (c) T3, (d) T4, (e) T5,
(f) T6. The rectangular boxes indicate the actual air-filled cavities. The broken lines represent the DOI threshold depths.

Modeling for the intermediate cavities located at 6.2 m (T3) and 8.2 m (T4) depths
showed reasonable model resolution in the tested arrays (Figures 7, 8, 9 and 10c,d). The
DD array displayed slightly better resolution than the other arrays. Figure 6 shows the
moderate correlation between the inverted images and the actual models. The obtained
anomaly sizes were noticeably overestimated, whereas the anomaly depths were underesti-
mated by about 0.4–1.3 m with regard to actual cavity models. In Figures 7, 8, 9 and 10c,d,
the artefacts were clearly observed on the shallow part of the inverted models, particularly
on the DD models. However, the resistivity imaging showed the intermediate cavity
anomalies, the size overestimation and depth underestimation were limited the proper
inference of the cavity information.

In contrast, the deeper cavity models set at 10.2 m (T5) and 12.2 m (T6) depths were not
recovered adequately by any of the arrays (Figures 7, 8, 9 and 10e,f). The obtained image
correlations to the real model were weak (Figure 6). As shown in Figures 7, 8, 9 and 10e,f,
the anomaly sizes were highly overestimated, making it very challenging to interpret
the cavity geometries without prior subsurface information. The result also showed
about 1.6–3.0 m anomaly depth underestimation relative to the actual cavity locations. As
the cavity depth increases, significant resistivity underestimation occurred in anomaly
zones. Furthermore, the shallow parts of the final models were contaminated by patched
inversion artefacts. These poor model accuracies can lead to inappropriate interpretation
in resistivity imaging.

The anomaly responses of different arrays for a particular air-filled cavity were also
examined graphically. We produced a one-dimensional (1D) horizontal resistivity profile
from the inverted model of the cavity T2, which crossed the mid-point of the cavity at
4.2 m depth (as shown in Figure 11). We extracted the resistivity values along the 1D
profile for the DD, PD, WS, and PP arrays. The DD array showed the highest (steepest)
anomaly gradient over the cavity zone, with the peak resistivity value of 2220 Ω·m. In
contrast, the PP array exhibited the lowest (gentlest) anomaly gradient, with the peak
resistivity value of 1400 Ω·m. The 1D profile of the PD and WS arrays showed moderate
anomaly gradients that have the peak resistivity value of 1850 and 1700 Ω·m, respectively.
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The arrays that provided the steep anomaly gradient can recover cavity boundaries more
accurately, while the arrays that yield the gentle anomaly gradient prevent the inference of
the cavity boundaries.
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The 1D resistivity profiles were also used to assess the effect of air-filled cavity depth
on the anomaly response of the arrays. Since the DD model provides the highest anomaly
gradient, we used its models to generate 1D horizontal profiles for different depth cavity
cases (Figure 12). The resistivity profile data were extracted along the profile lines that pass
via the mid-points of the cavities T1, T2, T3, T4, T5, and T6 at depths of 2.2, 4.2, 6.2, 8.2, 10.2,
and 12.2 m, respectively. The shallower cavity models showed a more robust resistivity
amplitude than the cavity set at the relatively deeper position. For instance, the upper cavity
T1 indicates the maximum anomaly amplitude with the peak resistivity value of 6470 Ω·m.
In comparison, the bottom cavity T6 exhibits a minimum anomaly amplitude with a peak
resistivity value of 1080 Ω·m. The substantial decrease in resistivity amplitude (gradient)
as an increase in cavity depth can limit obtaining the anomaly geometries (Figure 12).

Furthermore, the depth of investigation (DOI) index may show variation based on
the type of arrays and the resistivity distributions of the survey domain. We delineated
the more reliable zones of the inverted models since higher credibility is given for the
DOI patterns with values below 0.1 [28]. The zone below the threshold depth (DOI ≤ 0.1)
is considered a low sensitive zone and assumed to be poorly imaged [63]. Air-filled
cavity model simulation showed a small change of DOI index with cavity position, which
is slightly shifted up as the cavity depth increases (Figures 7–10). Consistent with our
results, other studies [57] depicted the variation of DOI indexes based on the resistivity
distribution of the survey domain. In our study, a significant variation of DOI index was
also observed for different types of arrays. The inverted models have displayed the average
DOI threshold depth of 8 m for DD, 9.8 m for WS, 10.5 m for PD, and 12.7 m for PP models
(Figures 7–10). For the same number of electrodes, equal spacing, and profile length, the
largest DOI threshold depth shown by the PP array may be due to its greater penetration
depth [22,25]. The PP array depicted the largest DOI threshold depth; however, it obtained
the lowest model resolution with blurred cavity anomalies (Figure 10). This is likely related
to the least sensitivity of the PP array to the subsurface resistivity variations [22,47].
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the dipole-dipole (DD) array.

Size of Cavity

The air-filled cavity size scenarios were used since the cavity size is an important factor
in the array-model resolution. We used three cavity sizes as three scenarios: 0.5 × 6 m,
1.5 × 6 m, and 3 × 6 m respectively, all set at 4.2 m depth.

The cavity size significantly affects the resolution of the resistivity tomogram. The
small cavity size in scenario 1 was not correctly resolved in any tested arrays; however, the
DD array showed a relatively better result (Figure 13). The small size cavity can be highly
smoothened by the inversion process, in addition to the low-resistivity measurement on the
recording instrument that nearly approaches the host resistivity value (Figure 13). We show
the results of scenario 2 with the results of the previous section for the similar-sized cavity
T2 for the sake of comparison (Figure 14). Scenario 2 was adequately resolved in the DD,
PD, and WS arrays; however, the PD and WS arrays’ resolution were slightly lower than
the DD array, whereas the PP array poorly recovered the cavity in scenario 2. Moreover,
all the tested arrays resolved scenario 3 cavities (Figure 15), but the PP array showed a
relatively lower resolution than the other arrays. For increasing cavity size, the model
resolution significantly improved, while the inversion artefacts considerably increased.
The result showed that the overestimation in anomaly size was less pronounced as cavity
size increases. By considering the homogenous host medium, cavity targets larger than the
anomaly size in scenario 1 could be recovered effectively by the DD array. The DD and WS
arrays could be effective for the cavity targets greater than or equal to the anomaly size in
scenario 2. The PP array could be effective for the cavity size having a size greater than or
equal to the anomaly in scenario 3.
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Orientation of Cavity

In karstic terrain, cavities are not usually aligned in the horizontal direction; thus, we
examined the surface resistivity methods using a cavity target (0.5 × 6 m) set at a different
inclination (I), such as the horizontal (I = 0◦), inclined (I = 45◦), and vertical (I = 90◦). As
the horizontal cavity models are discussed in the earlier sections (Figure 14), we present
the inclined (Figure 16) and vertical (Figure 17) cavity models. The result showed that the
orientation and geometry of the inclined cavity were correctly resolved in the DD and PD
arrays. The WS and PP arrays recovered the upper part of the inclined cavity, but they
did not properly detect the deeper parts (Figure 16). As shown in Figure 17, the PD and
DD arrays also accurately recovered the orientation and geometry of the vertical cavity,
whereas these were poorly reproduced in the WS and PP arrays. All the arrays recovered
the geometry of the top cavity boundary since the resistivity method detected a high signal
near the electrode position. For increasing cavity depth, the inverted resistivity value
decreased, and the cavity anomaly width considerably increased. Pronounced inversion
artefacts were observed in the inclined and vertical cavity models. It is well-known that
the DD array is highly sensitive to the lateral variation of the subsurface structures [21,64].
However, our results show that the DD array can also resolve cavities oriented in the
horizontal and inclined directions. The PD array could be more effective for vertical and
inclined cavity structures compared to the horizontal structures. The WS array is known
to be moderately sensitive to both lateral and vertical variations [22,27]. However, in our
results, it showed relatively better resolution for the horizontal cavity than the inclined
and vertical ones. The PP array depicted low resolution for all the tested orientations of
the cavity.

Geometry of Cavity

Obtaining the exact geometry of the subsurface structure using the resistivity method
is a challenging task [22,59]. As shown in Figure 18, we simulated two air-filled cavity
geometries: the L-shaped cavity (left side) and the triangular-shaped cavity (right side). The
L-shaped cavity geometry was slightly recovered in the DD and PD arrays. The WS and PP
array did not reproduce the geometry of the L-shaped cavity. The shape of the triangular
cavity was not reproduced in all the tested arrays. Even though the resistivity methods
show a high anomaly over the buried cavity zone, its geometry cannot be adequately
reconstructed for moderate to complex cavity structures. This is possibly associated with
the smoothness effect of the inversion method [59].
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Conductive Cavity Modeling

The air-filled cavity showed a high anomaly in resistivity imaging, while a conductive
cavity appeared as a low anomaly. For conductive cavity modeling, a cavity with a
1.5 × 6 m dimension set at 4.2 m depth was filled with dry clay (90 Ω·m) and saturated
clay (50 Ω·m).

Figure 19 shows the inverted model results for a cavity filled with dry clay. The
DD array accurately resolved the cavity; however, the anomaly size was higher than the
actual cavity size. The PD and WS arrays also showed relatively high resolution, and their
anomaly sizes were wider compared to the actual cavity. The recovered cavity orientation
was tilted in the case of the PD array. The PP array showed the lowest resolution, and its
anomaly geometry was unclear. The noticeable inversion artefact had a resistivity value
above 1160 Ω·m that can lead to inappropriate model interpretation in resistivity studies.
These artefacts were pronounced at shallow depth.
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Significantly low resistivity may be detected in resistivity imaging over a cavity filled
with clay and water [65]. We consider the groundwater level (2 m) above the cavity depth
for the saturated clay-filled condition, as shown in Figure 20. The model inversion result
showed that the saturated clay-filled cavity was accurately resolved in the DD array. The
PD and WS arrays obtained high resolution; however, the WS array showed a slightly lower
resolution than the PD array. The PP array identified the cavity zone, but its resolution
is lower than the other arrays. All the arrays exhibited noticeably wider anomaly sizes
with regard to the actual cavity size. The boundary between unsaturated and saturated
limestone was precisely resolved in the DD, WS, and PP arrays, while the recovered
boundary was slightly deeper in the PD array. The cavity filled with conductive materials
showed a slight improvement in the resolution of cavity anomaly compared to the air-filled
cavity model, particularly in the PP array (Figure 20). In line with our study, the DD array
field study shows the highest resolution for the conductive cavity [21,66]. The numerical
study for sinkhole modeling showed lower resolution in the DD array than the PD array,
contradicting our study [33]. The field study for cavity detection displayed relatively high
resolution in the PD array, while the PP array showed low resolution [67], consistent with
our results.
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Experimental Cavity Study

A field experiment was also conducted to validate the numerical modeling results.
Our numerical model cavities were embedded in a limestone unit; however, in the field
experiment, we used moderately compacted sandy clay as the host unit around an empty
plastic box which acted as the cavity (Figure 21). In our experiment, the one-tenth scale of
the cavity target T2 was used. Thus, the plastic box’s center with 0.15 × 0.15 × 0.6 m size
was situated at 0.42 m depth. The experimental resistivity datasets were measured using
89 electrodes of a 4-point light 10W (LGM Lippmann) resistivity meter with 0.1 m spacing
(Figure 21).
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Figure 22 shows the experimental resistivity survey results for the DD, PD, WS,
and PP arrays. The DD and PD arrays showed a high resistivity anomaly at the cavity
zone, whereas the lower anomaly amplitude was obtained by WS and PP arrays. The
experimental cavity geometry was more adequately reconstructed in the DD and WS arrays;
however, they obtained wider and shallower anomalies. The geometry of the cavity in the
PD array was not properly restored—its left side anomaly was elongated to the greater
depth. The PP array exhibited a triangular anomaly instead of providing the rectangular
cavity shape. Compared to the numerical results, the experimental cavity anomaly in
all the tested arrays showed considerable underestimation of anomaly depth. The depth
underestimation in cavity studies can lead to inappropriate interpretation, similar to other
field studies [26,68]. Since our study was conducted in shallow sandy clay, the patchily
distributed high and low resistive features were inferred as the inversion artefacts. The
DD, PD, and PP arrays artefact agreed with synthetic model results, whereas a relatively
greater artefact was observed in the WS arrays. As the experimental cavity was set in
low-resistive sandy clay, its obtained resistivity values were considerably underestimated
compared to the numerical cavity, which was embedded in limestone rock. Based on the
experimental result, the WS and DD arrays are more appropriate for the subsurface cavity
study, whereas the PD array is reasonable. The PP array is the least suitable, particularly in
obtaining the cavity geometry and position.
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Our numerical and experimental study can help to decide proper arrays for subsurface
target (e.g., cavity) studies. In line with our results, the field study and numerical modeling
have shown that the DD array can accurately resolve the subsurface structures such as
cavity [38,67], thin dike [25], buried wall [29,32], and sinkhole [21]. These structures were
moderately recovered by the WS and PD arrays [24,26,69]. The pole-pole array is generally
the poorest in terms of model accuracy and image quality [25,32], consistent with our study.
The array effectiveness is also constrained by the target depth-to-dimension ratio [32].
In our results, the shallowest cavities with considerable size were recovered effectively
(Figures 7, 8, 9 and 10a). For example, the DD, WS, and PD arrays well recovered a cavity
diameter larger than one-fourth times its depth, similar to other studies [24]. If the anomaly
geometry is not considered, those arrays can detect relatively deeper cavities. Thus, the
DD array could be the most effective, PD and WS arrays could be moderate, and the PP
array could be the least effective for surveying subsurface targets such as environmental
or archaeological features (e.g., buried cavity, tombs, and wall), and geological structures
(e.g., dike and thin channels).

3.3.2. Spatial Resolution

The spatial resolution of resistivity imaging is a function of many factors, including
subsurface material distribution, data accuracy, array sampling scheme, and the parameters
used in the model (e.g., smoothing factors) [70,71]. In this study, we used three different
anomaly sizes as input models with the same inversion parameters to assess the spatial
resolution of the arrays (DD, PD, WS, and PP).

Figure 23 shows the resolution test for scenario 1 with a checkerboard cell size of
1 × 2 m. In this scenario, the DD array can resolve the anomalies in both rows; however,
the resolution is significantly reduced for the second row. Other arrays can only resolve
the top row of anomalies. The WS and PP arrays depicted smearing at selected locations,
whereas the PD array showed vertical smearing across the profile. The anomaly geometries
were not well resolved for the PD array.
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The second scenario with a checkerboard cell size of 2 × 4 m was better resolved
in general compared to scenario 1, as shown in Figure 24. The DD array was able to
recover the first and second rows, but the resolution was slightly reduced for the second
row. The PD and WS arrays restored the entire checkerboard anomalies for the first
row; however, the resolution of the second row was significantly reduced. The PP array
recovered only the first row, and its anomaly was considerably smeared. The geometries of
the checkerboard patterns were more accurately recovered by the DD, PD, and WS arrays,
while the geometries could not be reproduced correctly for the PP array.

The larger size of 4 × 8 m was considered in the third scenario, as shown in Figure 25.
The DD array resolved the first and the second rows; however, the resolution was slightly
reduced for the second row. The PD, WS, and PP arrays consistently imaged the first row
input checkerboard structures, but these were not resolved correctly in the second row. The
second row checkerboards’ geometry was not accurately recovered for all the arrays and
displayed elongated checker anomalies instead of rectangular cells.
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The checkerboard test results depicted that even though we used the same arrays,
the resolution of the recovered anomalies can vary based on their sizes. In general, the
checkerboard resolution test of the first scenario reproduced about 12.5% checkerboard
patterns (Figure 23), while the second scenario (twice the size of scenario 1) restored about
25% of the checkerboard (Figure 24). The third scenario (twice the size of scenario 2)
reproduced about 50% of the checkerboard patterns (Figure 25). Thus, the increase in
target size can noticeably increase the obtained model resolution and recovery depth. If
the uniform background resistivity anomaly has a low amplitude compared to the targeted
anomaly, then the depth of recovery is higher (Figure 7). However, all the alternating
anomalies have similar amplitudes in the checkerboard test (Figure 24), and the recovery
depth is low. This is likely related to the concentration of current density at the first-
row of the checkerboard, which significantly decreases with depth, as current density is
concentrated at the top layer in stratified formation [72,73]. As the resistivity data points
are not uniformly distributed in the profile section, the inverted model resolution can
considerably be biased. As shown in Figures 23 and 24, the center of the survey profiles is
well recovered, but smearing is observed at the end of the profiles.

We can choose the best array type for surveying shallow subsurface features support-
ing the checkerboard resolution test with different studies if prior information is available.
Among the tested arrays, the DD array could be the most appropriate method for studying
concealed small-scale features with less than or equal to the checkerboard size in scenario 1,
such as void, tombs, and thin dikes [26,33,68]. The geological or environmental structures
(e.g., thin buried channels) with the checkerboard size in scenario 2 could be recovered
effectively by the DD, PD, and WS arrays [25,30]. All the tested arrays could resolve
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the subsurface features (e.g., tunnels, sinkholes) having a size greater than or equal to
the checkerboard size in scenario 3 [21,30]. These arrays could be more effective if the
targets-embedded media are homogenous.
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3.3.3. Sensitivity to Resistivity Contrasts

The detection of subsurface structure using the resistivity method is mainly dependent
on resistivity contrast, which may constrain the inverted model resolution [16]. We used
different resistivity perturbations (±20%, 40%, 60%, and 80%) to examine array (DD, PD,
WS, and PP) sensitivities. As shown in Figure 26, the DD array can resolve the first two rows
of the checkerboards for the tested perturbations. However, the model resolution of the DD
array was considerably enhanced for increased resistivity perturbation, reflecting the high
sensitivity of the DD array. The high sensitivity of the DD array helped to study various
subsurface structures with low [25,74] to high [32,75] resistivity contrasts. In contrasts,
the PD array recovered the first row of the checkerboard patterns (Figure 27); however,
the anomaly sizes were significantly overestimated for the higher values of negative
perturbations (−60% and −80%). It can slightly detect the positive 20% perturbation of
the second-row checkerboards. The PD array resolution was slightly improved as the
resistivity contrast increased, indicating the less sensitivity of the PD array to the resistivity
perturbations. The WS array can recover the first row of the checkerboard anomalies
in all the perturbations as well as high perturbations (60% and 80%) of the second row
(Figure 28). However, the resolution of the WS array is relatively lower than the DD array,
and its resolution considerably improved for the increased resistivity contrasts, indicating
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high sensitivity to resistivity perturbations. The PP array adequately reproduced the
first-row checkerboards for all the perturbations. Its resolution slightly increased, but the
improvements are negligible. This is likely related to the low sensitivity of the PP array
for both low- and high-resistivity contrasts (Figure 29). As shown in Figures 26–29, all
the arrays recovered the first row of the checkerboard patterns for the tested resistivity
perturbations. This may be associated with the high sensitivity of the resistivity methods
near the vicinity of the electrode positions.

Furthermore, the checkerboard tests were used to assess the inversion artefacts. The
extensive anomaly features observed below 2 m depth in Figure 23, below 4 m depth in
Figures 24 and 26–29, and below 8 m depth in Figure 25 were not in the input model and
interpreted as inversion artefacts. The pronounced artefacts at the edge of the profiles (e.g.,
Figure 26) are likely related to limited data points or no data coverages [76]. As shown
in Figures 26–29, the artefact contaminations were slightly increased as the degree of
resistivity perturbation increases, as the cross-borehole resistivity experiment for analyzing
subsurface heterogeneity between two boreholes has also shown [70]. Even though the
DD array has high resolving power, the recovered models were highly contaminated by
the inversion artefacts (Figure 26). The PD and PP arrays produced moderate artefacts
(Figures 27 and 29), whereas the WS array showed smaller artefacts (Figure 28). The
inversion artefacts show a linear association with signal-to-noise ratio; for instance, the
low signal-to-noise ratio of the DD array correlates with greater artefacts and the high
signal-to-noise ratio of the WS array correlates with lesser inversion artefacts [25,77].

We present the summary of the results from the experimental model and all the
synthetic modeling performed in this study in Table 1. It can help readers to decide
appropriate array types for the planned subsurface cavity studies.
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Table 1. Adequacy of the resistivity imaging types for cavity study: highly effective = xxx, moderately
effective = xx, and less effective = x.

Adequacy of Arrays for Cavity DD PD WS PP

Shallow depth (.4 m) 1 xxx xxx xxx xx
Intermediate depth (.8 m and >4 m) 1 xx x x x

Deeper depth (>8 m) 1 x x x -
Small size (.0.5 m) 2 x - - -

Intermediate size (.3 m and >0.5 m) 2 xxx xx xx x
Large size (>3 m) 2 xxx xxx xxx xx

Horizontal cavity 1,2 xxx xx xx x
Vertical cavity 1 xx xx x x
Inclined cavity 1 xxx xxx x x

Dry clay-filled cavity 1,2 xxx x xx x
Saturated clay-filled cavity 1,2 xxx xxx xxx xx

1 Considering a 1.5 × 6 m cavity size. 2 Considering 4.2 m depth. Except for dry and saturated clay, all the
scenarios considered an air-filled cavity. The host medium is considered as homogenous limestone. For the
heterogeneous background, the checkerboard cell size scenarios could be used.

In this study, we observed that a specific resistivity imaging method might provide
varying model accuracy, resolution, and anomaly responses for inversion of a single cavity
model situated at different survey depths. Such ambiguity in subsurface cavity studies can
substantially be reduced by applying two or more geophysical methods. Various methods
have different capabilities to resolve the subsurface structures; thus, they complement
each other and obtain detailed subsurface information. The joint inversion of two sepa-
rate datasets may improve the overall resolution and match the inverted and the actual
model [78]. Moreover, the joint interpretation of different outputs from two or more geo-
physical methods can minimize model ambiguity [77]. For example, a joint interpretation
of results from resistivity tomography and ground penetration radar survey can reduce the
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non-uniqueness of the inverted resistivity model. Particularly in cavity study, the upper
and lower boundaries of the cavity will be clearly determined by high-resolution ground
penetration radar; however, it usually fails to provide information about the host medium
and the cavity-filling materials. Instead, the resistivity imaging quite well detects the
cavity-filling materials and the surrounding formation, but it cannot resolve the accurate
geometry of the cavity [19]. Hence, using a joint interpretation of the model results and
performing a joint inversion of different methods can reduce those inherited uncertainties
of the resistivity imaging.

4. Conclusions

This study examined the uncertainties of resistivity imaging and identified the efficient
arrays for subsurface cavity studies. Different numerical examples were demonstrated to
examine the depth, size, orientation, geometry, and filling material effects on the array’s
imaging ability. An experimental cavity study was also performed to compare with
the numerical model results. In addition, we studied the spatial resolution for different
checkerboard sizes and assessed arrays’ sensitivities to resistivity perturbations. The
conceptual models were simulated to generate apparent resistivity data. The detection
abilities of the arrays were statistically analyzed using variances and anomaly effects of
the synthetically measured resistivity data. The apparent resistivity data were inverted to
recover geoelectric models, and the model accuracies were evaluated.

Based on cavity depth modeling, the DD array exhibited the highest anomaly effect
(1.46) and variance (24,400 Ω·m) in measured resistivity data for the shallowest cavity
(T1) set at 2.2 m depth. In contrast, the PP array showed the lowest anomaly effect (0.18)
and variance (900 Ω·m) for the deeper cavity (T6) set at 12.2 m depth. The anomaly effect
and the variance of resistivity data decreased for increasing cavity depths, limiting the
recovery of the cavity information. The DOI threshold depths were delineated, and the
inverted models were inspected. As cavity depth increases, the statistical image correlation
between the inverted and actual models was significantly decreased. The anomaly sizes
were considerably overestimated as cavity depth increases, which can highly restrict the
recovery of accurate geometries.

The arrays’ spatial resolution was significantly reduced as the size of the checkerboard
decreased. All the tested arrays accurately resolved the first row of the checkerboard cells,
but the second-row cells were considerably smeared, especially in the WS, PD, and PP
arrays. Based on sensitivity tests, all the arrays were highly sensitive to the resistivity
contrasts at the vicinity to electrode location. The DD and WS arrays showed higher
sensitivity to resistivity perturbations than the PD and PP arrays. The PD displayed
slightly better sensitivity compared to the PP array. Considerable artefact contaminations
occurred for the DD, PD, and PP models, whereas minor contamination was observed on
the WS models, which correlates with the signal-to-noise ratios of these arrays.

The study identified the ideal subsurface target probing arrays based on model ac-
curacy, resolution, and sensitivity. We infer that the DD array is the most effective for
studying subsurface targets (e.g., cavity), the PD and WS arrays are adequate, whereas
the PP array is the least suitable for target probing. The sensitivity and resolution were
substantially reduced as the depth increased; thus, a single cavity set at varying depth
resulted in different solutions. This leads to ambiguity in model interpretations of the
resistivity method. Under these circumstances, integrating prior information, performing a
joint inversion of different parameters, and jointly interpreting the model outputs of two or
more methods can significantly reduce the inherent uncertainties of the resistivity method.
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